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Abstract: Since it does not use any dangerous chemicals and is a simple, low-cost process, the green
synthesis approach for nanoparticle creation has several benefits compared to the physical and
chemical synthesis routes. The current study describes an environmentally friendly synthesis of zinc
oxide (ZnO) nanoparticles (NPs) using an extract of Punica granatum plant leaves. Fourier-transform
infrared spectroscopy (FTIR), ultraviolet-visible spectrophotometer (UV-Vis), field-emission scan-
ning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy, and X-ray diffraction
techniques were used to characterize the morphology, composition, and structural properties of the
synthesized zinc oxide nanoparticles. The XRD pattern reveals that the ZnO nanoparticles are crys-
talline and have a diameter of 20 nm. According to the FESEM studies, the ZnO-NPs have sizes
ranging from 50 to 100 nm on average and are almost spherical. When exposed to direct sunlight,
the produced ZnO-NPs demonstrate impressive photocatalytic oxidation of textile Orange 16, a re-
active dye. As a result, our research advances the development of a green photocatalyst for the
removal of harmful dyes from water.

Keywords: green synthesis; zinc oxide nanoparticle; photocatalytic; textile Orange 16 reactive dye

1. Introduction

New nanoscale materials are being produced as a result of the advancements in nan-
otechnology. These materials have a variety of uses, including in consumer goods, nano-
medicine, and nanoelectronics [1,2]. Because of their superior chemical and physical char-
acteristics when compared to their bulk counterparts, research on such materials has in-
creased significantly in recent years. Metal oxide nanostructures have been created, and
they have a variety of uses in various industries. A semiconductor with a greater band
gap (3.4 eV) is zinc oxide (ZnO). Applications for it include dye degradation, gas sensors,
solar cells, and many others [3]. Numerous chemical and physical techniques, such as the
sol-gel technique [4], the precipitation method [5], the arc discharge technique [6], the
hydrothermal method [7], and the laser ablation method [8], have been adopted for the
synthesis of ZnO nanoparticles. Due to its numerous advantages over the physical and

Crystals 2023, 13, 172. https://doi.org/10.3390/cryst13020172
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chemical approaches—including the fact that it does not use dangerous chemicals and is
both environmentally friendly and economically advantageous—synthesis via the green
method has been used to prepare ZnO nanoparticles [9,10]. This approach makes use of
biological components that are readily available from plants.

Because they are readily available, leaves from the Punica grantum plant have been
employed. The family of Punicaceae, which consists of two different species, is dominated
by the pomegranate species (Punica granatum). Punica grantum plant leaves contain alka-
loids, tannins, triterpenic acids, and flavonoids as phytochemicals [11]. Utilizing chemical
reduction, these phytoconstituents produce metal oxide nanoparticles by acting as the sta-
bilizing and reducing agents. As far as we are aware, there has not been any research on
the usage of P. granatum leaves in the preparation of ZnO-NPs.

Organic substances called dyes are used in the paper, food, leather, and textile indus-
tries. Strongly colored, hazardous dyes are present in the effluents from these enterprises.
The discharged effluents will enter running water, polluting the surface and groundwater
and perhaps endangering the health of aquatic life as well as that of people, fauna, and
the environment. Before release, the effluents would be treated to break down the dye into
non-toxic species. Different purification methods, including chemical, biological, and
physical techniques, have been developed, depending on the type of pollution. ZnO-NPs
have been used to degrade dyes with success [12-14]. Through catalytic photooxidation
with ZnO-NPs, reactive oxidative hydroxide radicals are created, which destroy the dyes.
According to its chemical makeup, the textile Orange 16 reactive dye is an organic sub-
stance classified as a disulfonated triphenylmethane dye. Although originally designed
for the textile industry, it is now frequently used for protein staining in biochemistry. The
catalyst should be stable and reusable in addition to having a high degradation efficiency,
as these qualities are crucial for industrial applications. Numerous investigations [15,16]
have shown that ZnO-NPs are stable and reusable.

The P. granatum leaf extract was used in the current work’s green synthesis to create
ZnO-NPs. Under exposure to direct sunlight, the green ZnO-NPs that were generated
were used to photocatalytically degrade the textile Orange 16 reactive dye.

2. Materials and Methodology
2.1. Materials

We gathered Punica granatum leaves from a field in Kaladagi near Bagalkot (India).
Zinc nitrate hexahydrate of high purity was procured from Sigma-Aldrich, Mumbai, In-
dia. All water used in the experiment was deionized distilled water. We bought textile
Orange 16 reactive dye from a local market in Bagalkot, Karnataka, India, through a textile
business. None of the chemicals were further purified before use. Glassware washed in a
prepared Piranha solution (3:1 volume ratio of H2504/H20:2) was rinsed with deionized
(DI) water with a resistivity of 16.4 MQ-cm (millipore water), dried in an oven, and re-
turned for later use.

2.2. Methodology
2.2.1. Extraction of Punica granatum Leaf

Young P. granatum leaves were collected from a Punica granatum plantation at a
Kaladagi village near Bagalkot (India). The leaves’ middle rib was cut off. The leaves that
remained were cleaned with distilled water to get rid of dust, and they were then dried in
the shade to get rid of all the moisture. An aqueous extract of Punica granatum leaf was
prepared. During the process, the dried leaves were weighed accurately and were finely
grounded in a mixture. Then, deionized water was added to the dried fine powder. For
about three hours, the mixture was refluxed at 60 °C, using the Soxhlet extractor appa-
ratus. Once the green color turned brownish, the process was stopped. At room tempera-
ture, the solution was allowed to cool for the period of ten to fifteen minutes. Furthermore,
Whatman No. 41 filter paper was used to filter the solution, and the filtrate was then



Crystals 2023, 13, 172

3 of 14

collected in a dry flask while the residue was thrown away. For future use, the leaf extract
was kept at ambient temperature.

2.2.2. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs)

In deionized water, a solution of Zn(NOs)2:6H20 (0.1 M) was made. The mixture was
made homogeneously by stirring it without being heated. After that, a magnetic stirrer
was used to gradually add drops of the aqueous leaf extract to the zinc nitrate solution.
After the leaf extract was completely added, the resulting mixture was stirred with heat-
ing at 60 °C for 3—4 h on a hot plate until it took the form of slurry. The obtained slurry
substance was filtered and placed in a crucible. The sample was calcined at 500 °C in a
muffle furnace at a heating rate of 5 °C for 5 h. After calcination, white powder was ob-
tained and stored properly.

2.2.3. Characterization of ZnO-NPs

A Siemens D 5000 (Malvern, UK) powder X-ray diffractometer was used to perform
X-ray diffraction on the powdered zinc oxide nanoparticles. The UV-visible spectrum of
the zinc oxide nanoparticles was recorded by employing a UV spectrophotometer (Sys-
tonic, Bangalore, India). The samples were evaluated between 200 and 800 nm. A Shi-
madzu (Model: IR Affinity-1, Tokyo, Japan) FTIR spectrometer was used to perform Fou-
rier-transform spectroscopic measurements. A Carl Zeiss (Model: Sigma 300, Bangalore,
India) field-emission scanning electron microscope (FESEM) was used to examine the sur-
face morphology and the dimension of the particles of the prepared ZnO nanoparticles.
The Oxford instrument (Buckinghamshire, UK), an energy-dispersive X-ray spectroscopy
(EDX), was used to obtain the spectrum to check the purity of the synthesized ZnO nano-
particles and the stoichiometry of the samples. The particle size of the synthesized ZnO-
NPs was determined using the Zetasizer (Model 3000HS, Malvern, UK). On a cuvette, the
zeta average size of ZnO-NPs suspended in DI water was determined. The measurement
was repeated three times, and the average value was used for data analysis.

2.2.4. Photocatalytic Activity of ZnO-NPs

A photodegradation study of textile Orange 16 reactive dye in water by exposure to
sunlight was used to determine the ZnO nanoparticles as the photocatalysts. For this, an
artificial, laboratory-simulated dye was prepared by dissolving the dye in water until the
solution’s absorbance value was more than one, i.e., 0.4 g in 100 mL of water. To the pre-
pared colored mixture, a known amount of ZnO (i.e., 0.1 g), which would act as a photo-
catalyst, was added. Later, the aqueous solution was sonicated for 30 min. The solution
was then kept in sunlight while being constantly stirred. After 30 min, 5 mL of the solution
was withdrawn and centrifuged to settle down the ZnO photocatalyst. The supernatant
solution was used to measure the absorbance with a UV-Vis spectrophotometer. From the
experiment, it was observed that the value of absorbance reduced after each interval,
showing the degradation of the dye by the ZnO-NPs. The detailed stepwise green synthe-
sis of ZnO nanoparticles and their photocatalytic action are shown in Figure 1.
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Soxhlet extraction Zme Nitrate

Dye Degradation Dye+Zn0O in water Dye ZnO NP's

Figure 1. Step-by-step process of ZnO-NP synthesis via green route and the degradation of the
dye.

3. Results and Discussion
3.1. X-ray Diffraction Analysis

Figure 2 depicts the X-Ray diffraction graph of the green synthesized ZnO nanopar-
ticles. The sample was examined at various angles, ranging from 0° to 70°. ZnO nanopar-
ticles have significant peaks at 20 = 31.81°, 34.49°, 36.28°, 47.62°, 56.63°, 62.91°, and 68°,
which can be designated as (100), (002), (101), (102), (110), (103), and (200), respectively.
The orientation and crystallinity of the ZnO-NPs were revealed by using the X-ray pat-
tern. The JCPDS data sheet/ICDD no. 36-1451 was used to compute the XRD pattern. The
obtained X-ray pattern demonstrate that ZnO-NPs were synthesized using the green syn-
thesis route, with the establishment of crystalline and wurtzite hexagonal structures. The
particle dimension of ZnO-NPs was computed using the Debye-Scherrer equation from
the highest peak (101) in the XRD graph:

g K2
~ Bcosb

where d is the size of the crystallite; A is the wavelength for diffraction; f8 is the corrected
value of FWHM,; 0 is the angle of diffraction; and K is the universal and its value is near
unity, i.e., 0.94.

The purity of the ZnO-NPs is confirmed by the absence of diffraction peaks from
other phases.

)
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Figure 2. X-ray diffraction curves of green synthesized ZnO nanoparticles.

Bragg’s equations 3-5 were used to calculate the inter-planar spacing (d), the lattice
parameters (a =b and c) for the hexagonal wurtzite structure, and the volume of the hex-
agonal system unit cell (V) [17-20]. Table 1 summarizes all of these parameters.

nl=2dsin@ )

1 4 h? + hk + k? +12 5
dz 3 a? c? )
1% —gazc (4)

where diw = inter-planar spacing; V = volume of the unit cell; and 4, c = lattice parameters
for the ZnO-NP.

Table 1. Crystallite size (D), inter-planar spacing (d), lattice parameters (2 = b and c), and volume (V)
were calculated from the XRD measurements at 50 mmol/kg concentrations of Zn(NOs)2-6H20.

m (mmol/kg) D (nm) d (nm) a=bmm) c(nm) V (nm?)

50 31.158 0.256 0.325 0.527 4.721

’m represents the molality of Zn (NOs)2:6H20 in water.

3.2. Particle Size Analysis

The particle size of the ZnO-NPs is depicted in Figure 3. The obtained results reveal
that the size of ZnO particles ranges between 60 and 100 nm. The average particle size is
measured at 80 nm.
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Figure 3. Histogram of ZnO particle size distribution.

3.3. UV-Visible Spectroscopic Analysis

Surface plasmon resonance distinguishes the absorbance pattern of nanoparticles
from that of their bulk counterparts. The UV-visible measurement was used to confirm
the formation of nanoparticles. Figure 4 depicts the UV-visible absorption spectrum of the
ZnO-NPs. Using a systonic UV spectrophotometer, the substance was analyzed between
200 and 800 nm. The color of a solution of zinc nitrate hexahydrate (Zn(NOs)2H20)
changed from white to brown when the P. granatum leaf extract was added. This resulted
from the solution’s synthesis of ZnO-NPs. The nanoparticles of zinc oxide are responsible
for stimulating the surface plasmon vibrations, which in turn generate color changes. The
absorbance peak was found to be centered at 382 nm, indicating that zinc nitrate hexahy-
drate had been converted to ZnO-NPs [21-23].

0.40 -

I ¥ 1 ¥ I d I ¥

| P. Granatum Extract y
0.35 - 380 nm | T — ZnO NPS

Absorbance (a.u.)

0.10 1 | I A 1 s I N I - I N 1
200 300 400 500 600 700 800

Wavelength (nm)

Figure 4. ZnO-NPs and P. granatum leave extract spectra measured using an UV-visible spectropho-
tometer. (Inside: photograph of ZnO-NPs synthesized via green method).
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The optical energy band gap (Eg) was calculated using Formula (5), and the results
are shown in Table 2.

hc
Ey == 5)
From this formula, ‘h’ represents the Planck’s constant (6.626 x 103 J s), ‘c’ corre-
sponds to the velocity of light (the value is 3 x 108 m s), and A corresponds to the wave-

length of the peak with the maximum intensity [24].

Table 2. Amax and energy band gap (Eg) results of ZnO-NPs at three different concentrations of zinc
nitrate hexahydrate.

*m (mmpl/kg) Amax (nm) Eg (eV)

5 381 3.436+0.3
10 386 3.369 £ 0.4
50 390 3.361 +0.3

’m represents the molality of Zn(NOs)2:6H20 in water.

The band gap values were calculated, and the results are nearly equivalent to 3.4 eV,
which is consistent with previously reported values in the literature. Suresh et al. (3.33
eV) [25] and Hancock et al. (3.39 eV) [26] reported comparable band gap results. The var-
iation in the shape and size of the ZnO-NPs may explain the difference in E; with Zn
(NO:s)2:6H20 concentration. In addition, a decrease in Eg values is attributed to an increase
in ZnO particle size [27].

3.4. FESEM and EDX Analysis

ZnO may be produced into several nanostructures, including nanospheres, nano-
rods, and others. By looking at and analyzing each minute topographical feature using a
field-emission scanning electron microscope (FESEM), the particle size and shape may be
determined. The particle size and shape of the synthesized ZnO nanoparticles were ana-
lyzed with the aid of a Carl Zeiss FESEM. Figure 5 displays a FESEM picture of the ZnO
nanoparticles that were synthesized via the green route. This image demonstrates that the
particle is composed of nanostructures, which are even smaller structures. The XRD in-
vestigation indicated that the nanoparticles are fully spherical, with an average diameter
of 80 nm.
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Figure 5. FESEM picture of zinc oxide NPs synthesized via the green route.

EDX was utilized to undertake an elemental investigation or chemical composition
on the ZnO nanoparticles made in an environmentally responsible manner. The stoichi-
ometry and chemical purity of the samples were analyzed using an EDX-equipped equip-
ment from Oxford. The EDX spectrum of the ZnO nanoparticles is illustrated here in Fig-
ure 6. The EDX spectrum indicates indisputably that ZnO and oxygen (O) ions are present
in the ZnO nanoparticles formed by the P. Granatum reaction. According to the findings
of the elemental analysis, the ZnO powder is made up of 76% zinc and 15% oxygen, which
shows that it is quite pure and only comprises a minor number of contaminants. The stoi-
chiometry reveals that the mass percentages of zinc and oxygen should be 80.3% and
19.7%, respectively, if we are to trust the formulae.
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Figure 6. EDAX pattern for the green synthesized ZnO-NPs (Zn—zinc, O—oxygen, and C—car-
bon).

3.5. FT-IR Analysis

FT-IR spectroscopy was used to establish the presence of the Zn-O bond and its for-
mation mechanism, as well as to detect the photo components that coat the surface of the
ZnO-NPs. Fourier-transform infrared spectroscopy was performed using a Bruker Alpha
FTIR as the instrument. Figure 7 depicts the FT-IR spectra of the ZnO-NPs that were syn-
thetically generated via the green route. Both the 3610 cm™ and 3822 cm™ spectral peaks
are the consequence of O-H stretching. The C-H stretch is responsible for the peak that
appears at roughly 2354 cm'. The peak is induced by C=0O stretching and is located at
about 1512 cm™. There is a link between the peaks at 1635 cm™ and ZnO vibrations caused
by bending deformation. At 610 cm™, strong vibrational bands are produced as a result of
the stretching modes utilized to form the ZnO nanoparticles. The phytoconstituents of P.
granatum prevent the aggregation of ZnO-NPs during their production [22,23,28,29]. This
is achieved by stabilizing the nanoparticles’ surface.

50 ' . . ; : . ; i
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Figure 7. FTIR spectrum of ZnO-NPs.

3.6. Photocatalytic Activity

To evaluate the photodegradation of textile Orange 16 reactive dye in the presence
of ZnO nanoparticles, the decrease in the absorbance of the dye was determined. The de-
crease in the absorbance of the dye solution as a function of exposure length is consistent
with a decline in the concentration of textile Orange 16 reactive dye. Over time, the con-
centration of the blue pigment in the dye solution progressively lost its vibrancy, until it
ultimately became light blue. Figure 8 depicts the deterioration of the textile Orange 16
reactive dye stain as a function of time in the samples exposed to sunlight. It can be seen
that 600 nm is the wavelength at which textile Orange 16 reactive dye has the highest
absorption peak. In addition, it reveals that ZnO-NPs are capable of significantly reducing
the pollutant within three hours.

T [ T ' L] F L] I T
14
Control — 9
1 =30 min ] \
1.2 = .._..gg m!n %M' - -
i i - ~ 1
104 =120 min 2 Y
2; ——— 150 min 3 \ i
& - =180 min .
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Figure 8. UV-vis absorption spectra showing the degradation of textile Orange 16 reactive dye by
photocatalytic action using zinc oxide NPs synthesized via the green route at 30 min time intermis-
sions. Inset: decrease in intensity of textile Orange 16 reactive dye in the presence of ZnO-NPs with
time.

3.7. Recyclability and Photostability

Three cycles of photocatalysis were conducted to assess whether or not the photo-
catalyst could be recycled. The images are depicted in Figure 9. Figure 9a shows a 100%
efficiency even after three cycles of photocatalysis. In addition, as seen in Figure 9b, the
XRD measurements performed after the photocatalytic phenomenon show that the crys-
talline structure of ZnO has not altered when compared to before the photocatalytic pro-
cess was undertaken.
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Figure 9. (a) The degradation profile of ZnO-NPs for three cycles and (b) XRD of ZnO after three
cycles.

Figure 10 shows the photodegradation of the Orange 16 dye by using green synthe-
sized ZnO nanoparticles. As observed in Figure 10, the effectiveness of the ZnO-NPs as
photocatalysts for the breakdown of organic materials is shown by the decline in the color
intensity of the dye with respect to the time of exposure to sunlight.

Figure 10. The color intensity before and after photodegradation using green synthesized ZnO na-
noparticles.

3.8. Photolysis

There are three types of photocatalytic dye degradation mechanisms: (1) dye sensiti-
zation via charge injection, (2) indirect dye degradation via oxidation/reduction, and (3)
direct photolysis of the dye. Photocatalytic substances are generally classified into three
generations. One-component (e.g., ZnO and TiO2) and multi-component semiconductor
metal oxide (e.g., ZnO-TiO:z and Bi203-ZnO) photocatalysts are classified as first-genera-
tion and second-generation, respectively. Third-generation photocatalysts are photocata-
lysts that are dispersed on an inert solid substrate (e.g., Ag-Al20s and ZnO-C).

Because some dyes are degraded by direct UV irradiation, it is necessary to investi-
gate the extent to which textile Orange 16 reactive dye is photolyzed in the absence of a
photocatalyst. In the absence of the photocatalyst, direct UV radiation exposure photo-
lyzed textile Orange 16 reactive dye by up to 25% in 30 min. When ZnO-NPs were used
as a photocatalyst and exposed to UV radiation, it was discovered that the
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photodegradation of the dye increased by decolorizing the textile Orange 16 reactive dye
with an efficiency of 96% in 30 min. The time-dependent photocatalytic degradation and
the photolysis of textile Orange 16 reactive dye concentration are shown in Figure 11.

0 —=—ZnO+UV
: —o—uv
0.8 +
06 -
o
Q
O 0.4+
0.2
0.0
I " I 1 I ! I . I Y T Y I
0 5 10 15 20 25 30

Time (min)
Figure 11. Time-dependent photocatalytic degradation and photolysis of textile Orange 16 reactive
dye concentration (C/Co).

3.9. Comparison

The dye photodegradation in the presence of the synthesized ZnO-NPs was com-
pared to a commercial ZnO and previously reported work. The results are tabulated in
Table 3.

Table 3. Comparison of ZnO-NPs as a photocatalyst for dye degradation.

% Photocatalytic

SI. No Photocatalyst Time (min) Degradation of Dye Reference

1 ZnO 180 94 Present work
ZnO 180 95 Commercial ZnO

3 ZnO 160 86.9 [17]

Among the tested ZnO NPs, commercial ZnO performed the best when compared to
other ZnO NPs.

4. Conclusions

In the current investigation, an extract of the leaves of P. granatum was dissolved in
water and utilized in a green synthesis process, which resulted in the successful genera-
tion of ZnO-NPs. The preparation of spherical, polydisperse ZnO-NPs with sizes ranging
from 50 to 100 nm and an average size of 80 nm was performed. The majority of the na-
noparticles are spherical and have an 80 nm diameter. According to the results of the EDX
analysis, the ZnO powder has a very high degree of purity and includes nearly no impu-
rities. The powder consists of 76% zinc and 15% oxygen. According to the results of the
photocatalytic experiment, the bio-produced ZnO-NPs are able to photodegrade the tex-
tile Orange 16 reactive dye with an overall efficiency of 93%. The photolysis of the textile
Orange 16 reactive dye concentration without and with ZnO-NPs shows that the ZnO-
NPs play the role of photocatalysts effectively. According to the results of this work, the
manufacture of ZnO-NPs using the P. granatum leaf extract is safe, inexpensive,
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straightforward, and environmentally friendly, and these nanoparticles have shown effi-
cacy as green photocatalysts in the actual treatment of wastewater.
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Abstract: Since it does not use any dangerous chemicals and is a simple, low-cost process, the green
synthesis approach for nanoparticle creation has several benefits compared to the physical and
chemical synthesis routes. The current study describes an environmentally friendly synthesis of zinc
oxide (ZnO) nanoparticles (NPs) using an extract of Punica granatum plant leaves. Fourier-transform
infrared spectroscopy (FTIR), ultraviolet-visible spectrophotometer (UV-Vis), field-emission scan-
ning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy, and X-ray diffraction
techniques were used to characterize the morphology, composition, and structural properties of the
synthesized zinc oxide nanoparticles. The XRD pattern reveals that the ZnO nanoparticles are crys-
talline and have a diameter of 20 nm. According to the FESEM studies, the ZnO-NPs have sizes
ranging from 50 to 100 nm on average and are almost spherical. When exposed to direct sunlight,
the produced ZnO-NPs demonstrate impressive photocatalytic oxidation of textile Orange 16, a re-
active dye. As a result, our research advances the development of a green photocatalyst for the
removal of harmful dyes from water.

Keywords: green synthesis; zinc oxide nanoparticle; photocatalytic; textile Orange 16 reactive dye

1. Introduction

New nanoscale materials are being produced as a result of the advancements in nan-
otechnology. These materials have a variety of uses, including in consumer goods, nano-
medicine, and nanoelectronics [1,2]. Because of their superior chemical and physical char-
acteristics when compared to their bulk counterparts, research on such materials has in-
creased significantly in recent years. Metal oxide nanostructures have been created, and
they have a variety of uses in various industries. A semiconductor with a greater band
gap (3.4 eV) is zinc oxide (ZnO). Applications for it include dye degradation, gas sensors,
solar cells, and many others [3]. Numerous chemical and physical techniques, such as the
sol-gel technique [4], the precipitation method [5], the arc discharge technique [6], the
hydrothermal method [7], and the laser ablation method [8], have been adopted for the
synthesis of ZnO nanoparticles. Due to its numerous advantages over the physical and
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chemical approaches—including the fact that it does not use dangerous chemicals and is
both environmentally friendly and economically advantageous—synthesis via the green
method has been used to prepare ZnO nanoparticles [9,10]. This approach makes use of
biological components that are readily available from plants.

Because they are readily available, leaves from the Punica grantum plant have been
employed. The family of Punicaceae, which consists of two different species, is dominated
by the pomegranate species (Punica granatum). Punica grantum plant leaves contain alka-
loids, tannins, triterpenic acids, and flavonoids as phytochemicals [11]. Utilizing chemical
reduction, these phytoconstituents produce metal oxide nanoparticles by acting as the sta-
bilizing and reducing agents. As far as we are aware, there has not been any research on
the usage of P. granatum leaves in the preparation of ZnO-NPs.

Organic substances called dyes are used in the paper, food, leather, and textile indus-
tries. Strongly colored, hazardous dyes are present in the effluents from these enterprises.
The discharged effluents will enter running water, polluting the surface and groundwater
and perhaps endangering the health of aquatic life as well as that of people, fauna, and
the environment. Before release, the effluents would be treated to break down the dye into
non-toxic species. Different purification methods, including chemical, biological, and
physical techniques, have been developed, depending on the type of pollution. ZnO-NPs
have been used to degrade dyes with success [12-14]. Through catalytic photooxidation
with ZnO-NPs, reactive oxidative hydroxide radicals are created, which destroy the dyes.
According to its chemical makeup, the textile Orange 16 reactive dye is an organic sub-
stance classified as a disulfonated triphenylmethane dye. Although originally designed
for the textile industry, it is now frequently used for protein staining in biochemistry. The
catalyst should be stable and reusable in addition to having a high degradation efficiency,
as these qualities are crucial for industrial applications. Numerous investigations [15,16]
have shown that ZnO-NPs are stable and reusable.

The P. granatum leaf extract was used in the current work’s green synthesis to create
ZnO-NPs. Under exposure to direct sunlight, the green ZnO-NPs that were generated
were used to photocatalytically degrade the textile Orange 16 reactive dye.

2. Materials and Methodology
2.1. Materials

We gathered Punica granatum leaves from a field in Kaladagi near Bagalkot (India).
Zinc nitrate hexahydrate of high purity was procured from Sigma-Aldrich, Mumbai, In-
dia. All water used in the experiment was deionized distilled water. We bought textile
Orange 16 reactive dye from a local market in Bagalkot, Karnataka, India, through a textile
business. None of the chemicals were further purified before use. Glassware washed in a
prepared Piranha solution (3:1 volume ratio of H2504/H20:2) was rinsed with deionized
(DI) water with a resistivity of 16.4 MQ-cm (millipore water), dried in an oven, and re-
turned for later use.

2.2. Methodology
2.2.1. Extraction of Punica granatum Leaf

Young P. granatum leaves were collected from a Punica granatum plantation at a
Kaladagi village near Bagalkot (India). The leaves’ middle rib was cut off. The leaves that
remained were cleaned with distilled water to get rid of dust, and they were then dried in
the shade to get rid of all the moisture. An aqueous extract of Punica granatum leaf was
prepared. During the process, the dried leaves were weighed accurately and were finely
grounded in a mixture. Then, deionized water was added to the dried fine powder. For
about three hours, the mixture was refluxed at 60 °C, using the Soxhlet extractor appa-
ratus. Once the green color turned brownish, the process was stopped. At room tempera-
ture, the solution was allowed to cool for the period of ten to fifteen minutes. Furthermore,
Whatman No. 41 filter paper was used to filter the solution, and the filtrate was then
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collected in a dry flask while the residue was thrown away. For future use, the leaf extract
was kept at ambient temperature.

2.2.2. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs)

In deionized water, a solution of Zn(NOs)2:6H20 (0.1 M) was made. The mixture was
made homogeneously by stirring it without being heated. After that, a magnetic stirrer
was used to gradually add drops of the aqueous leaf extract to the zinc nitrate solution.
After the leaf extract was completely added, the resulting mixture was stirred with heat-
ing at 60 °C for 3—4 h on a hot plate until it took the form of slurry. The obtained slurry
substance was filtered and placed in a crucible. The sample was calcined at 500 °C in a
muffle furnace at a heating rate of 5 °C for 5 h. After calcination, white powder was ob-
tained and stored properly.

2.2.3. Characterization of ZnO-NPs

A Siemens D 5000 (Malvern, UK) powder X-ray diffractometer was used to perform
X-ray diffraction on the powdered zinc oxide nanoparticles. The UV-visible spectrum of
the zinc oxide nanoparticles was recorded by employing a UV spectrophotometer (Sys-
tonic, Bangalore, India). The samples were evaluated between 200 and 800 nm. A Shi-
madzu (Model: IR Affinity-1, Tokyo, Japan) FTIR spectrometer was used to perform Fou-
rier-transform spectroscopic measurements. A Carl Zeiss (Model: Sigma 300, Bangalore,
India) field-emission scanning electron microscope (FESEM) was used to examine the sur-
face morphology and the dimension of the particles of the prepared ZnO nanoparticles.
The Oxford instrument (Buckinghamshire, UK), an energy-dispersive X-ray spectroscopy
(EDX), was used to obtain the spectrum to check the purity of the synthesized ZnO nano-
particles and the stoichiometry of the samples. The particle size of the synthesized ZnO-
NPs was determined using the Zetasizer (Model 3000HS, Malvern, UK). On a cuvette, the
zeta average size of ZnO-NPs suspended in DI water was determined. The measurement
was repeated three times, and the average value was used for data analysis.

2.2.4. Photocatalytic Activity of ZnO-NPs

A photodegradation study of textile Orange 16 reactive dye in water by exposure to
sunlight was used to determine the ZnO nanoparticles as the photocatalysts. For this, an
artificial, laboratory-simulated dye was prepared by dissolving the dye in water until the
solution’s absorbance value was more than one, i.e., 0.4 g in 100 mL of water. To the pre-
pared colored mixture, a known amount of ZnO (i.e., 0.1 g), which would act as a photo-
catalyst, was added. Later, the aqueous solution was sonicated for 30 min. The solution
was then kept in sunlight while being constantly stirred. After 30 min, 5 mL of the solution
was withdrawn and centrifuged to settle down the ZnO photocatalyst. The supernatant
solution was used to measure the absorbance with a UV-Vis spectrophotometer. From the
experiment, it was observed that the value of absorbance reduced after each interval,
showing the degradation of the dye by the ZnO-NPs. The detailed stepwise green synthe-
sis of ZnO nanoparticles and their photocatalytic action are shown in Figure 1.
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Figure 1. Step-by-step process of ZnO-NP synthesis via green route and the degradation of the
dye.

3. Results and Discussion
3.1. X-ray Diffraction Analysis

Figure 2 depicts the X-Ray diffraction graph of the green synthesized ZnO nanopar-
ticles. The sample was examined at various angles, ranging from 0° to 70°. ZnO nanopar-
ticles have significant peaks at 20 = 31.81°, 34.49°, 36.28°, 47.62°, 56.63°, 62.91°, and 68°,
which can be designated as (100), (002), (101), (102), (110), (103), and (200), respectively.
The orientation and crystallinity of the ZnO-NPs were revealed by using the X-ray pat-
tern. The JCPDS data sheet/ICDD no. 36-1451 was used to compute the XRD pattern. The
obtained X-ray pattern demonstrate that ZnO-NPs were synthesized using the green syn-
thesis route, with the establishment of crystalline and wurtzite hexagonal structures. The
particle dimension of ZnO-NPs was computed using the Debye-Scherrer equation from
the highest peak (101) in the XRD graph:

g K2
~ Bcosb

where d is the size of the crystallite; A is the wavelength for diffraction; f8 is the corrected
value of FWHM,; 0 is the angle of diffraction; and K is the universal and its value is near
unity, i.e., 0.94.

The purity of the ZnO-NPs is confirmed by the absence of diffraction peaks from
other phases.

)
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Figure 2. X-ray diffraction curves of green synthesized ZnO nanoparticles.

Bragg’s equations 3-5 were used to calculate the inter-planar spacing (d), the lattice
parameters (a =b and c) for the hexagonal wurtzite structure, and the volume of the hex-
agonal system unit cell (V) [17-20]. Table 1 summarizes all of these parameters.

nl=2dsin@ )

1 4 h? + hk + k? +12 5
dz 3 a? c? )
1% —gazc (4)

where diw = inter-planar spacing; V = volume of the unit cell; and 4, c = lattice parameters
for the ZnO-NP.

Table 1. Crystallite size (D), inter-planar spacing (d), lattice parameters (2 = b and c), and volume (V)
were calculated from the XRD measurements at 50 mmol/kg concentrations of Zn(NOs)2-6H20.

m (mmol/kg) D (nm) d (nm) a=bmm) c(nm) V (nm?)

50 31.158 0.256 0.325 0.527 4.721

’m represents the molality of Zn (NOs)2:6H20 in water.

3.2. Particle Size Analysis

The particle size of the ZnO-NPs is depicted in Figure 3. The obtained results reveal
that the size of ZnO particles ranges between 60 and 100 nm. The average particle size is
measured at 80 nm.
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Figure 3. Histogram of ZnO particle size distribution.

3.3. UV-Visible Spectroscopic Analysis

Surface plasmon resonance distinguishes the absorbance pattern of nanoparticles
from that of their bulk counterparts. The UV-visible measurement was used to confirm
the formation of nanoparticles. Figure 4 depicts the UV-visible absorption spectrum of the
ZnO-NPs. Using a systonic UV spectrophotometer, the substance was analyzed between
200 and 800 nm. The color of a solution of zinc nitrate hexahydrate (Zn(NOs)2H20)
changed from white to brown when the P. granatum leaf extract was added. This resulted
from the solution’s synthesis of ZnO-NPs. The nanoparticles of zinc oxide are responsible
for stimulating the surface plasmon vibrations, which in turn generate color changes. The
absorbance peak was found to be centered at 382 nm, indicating that zinc nitrate hexahy-
drate had been converted to ZnO-NPs [21-23].

0.40 -

I ¥ 1 ¥ I d I ¥

| P. Granatum Extract y
0.35 - 380 nm | T — ZnO NPS

Absorbance (a.u.)

0.10 1 | I A 1 s I N I - I N 1
200 300 400 500 600 700 800

Wavelength (nm)

Figure 4. ZnO-NPs and P. granatum leave extract spectra measured using an UV-visible spectropho-
tometer. (Inside: photograph of ZnO-NPs synthesized via green method).
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The optical energy band gap (Eg) was calculated using Formula (5), and the results
are shown in Table 2.

hc
Ey == 5)
From this formula, ‘h’ represents the Planck’s constant (6.626 x 103 J s), ‘c’ corre-
sponds to the velocity of light (the value is 3 x 108 m s), and A corresponds to the wave-

length of the peak with the maximum intensity [24].

Table 2. Amax and energy band gap (Eg) results of ZnO-NPs at three different concentrations of zinc
nitrate hexahydrate.

*m (mmpl/kg) Amax (nm) Eg (eV)

5 381 3.436+0.3
10 386 3.369 £ 0.4
50 390 3.361 +0.3

’m represents the molality of Zn(NOs)2:6H20 in water.

The band gap values were calculated, and the results are nearly equivalent to 3.4 eV,
which is consistent with previously reported values in the literature. Suresh et al. (3.33
eV) [25] and Hancock et al. (3.39 eV) [26] reported comparable band gap results. The var-
iation in the shape and size of the ZnO-NPs may explain the difference in E; with Zn
(NO:s)2:6H20 concentration. In addition, a decrease in Eg values is attributed to an increase
in ZnO particle size [27].

3.4. FESEM and EDX Analysis

ZnO may be produced into several nanostructures, including nanospheres, nano-
rods, and others. By looking at and analyzing each minute topographical feature using a
field-emission scanning electron microscope (FESEM), the particle size and shape may be
determined. The particle size and shape of the synthesized ZnO nanoparticles were ana-
lyzed with the aid of a Carl Zeiss FESEM. Figure 5 displays a FESEM picture of the ZnO
nanoparticles that were synthesized via the green route. This image demonstrates that the
particle is composed of nanostructures, which are even smaller structures. The XRD in-
vestigation indicated that the nanoparticles are fully spherical, with an average diameter
of 80 nm.
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Figure 5. FESEM picture of zinc oxide NPs synthesized via the green route.

EDX was utilized to undertake an elemental investigation or chemical composition
on the ZnO nanoparticles made in an environmentally responsible manner. The stoichi-
ometry and chemical purity of the samples were analyzed using an EDX-equipped equip-
ment from Oxford. The EDX spectrum of the ZnO nanoparticles is illustrated here in Fig-
ure 6. The EDX spectrum indicates indisputably that ZnO and oxygen (O) ions are present
in the ZnO nanoparticles formed by the P. Granatum reaction. According to the findings
of the elemental analysis, the ZnO powder is made up of 76% zinc and 15% oxygen, which
shows that it is quite pure and only comprises a minor number of contaminants. The stoi-
chiometry reveals that the mass percentages of zinc and oxygen should be 80.3% and
19.7%, respectively, if we are to trust the formulae.
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Figure 6. EDAX pattern for the green synthesized ZnO-NPs (Zn—zinc, O—oxygen, and C—car-
bon).

3.5. FT-IR Analysis

FT-IR spectroscopy was used to establish the presence of the Zn-O bond and its for-
mation mechanism, as well as to detect the photo components that coat the surface of the
ZnO-NPs. Fourier-transform infrared spectroscopy was performed using a Bruker Alpha
FTIR as the instrument. Figure 7 depicts the FT-IR spectra of the ZnO-NPs that were syn-
thetically generated via the green route. Both the 3610 cm™ and 3822 cm™ spectral peaks
are the consequence of O-H stretching. The C-H stretch is responsible for the peak that
appears at roughly 2354 cm'. The peak is induced by C=0O stretching and is located at
about 1512 cm™. There is a link between the peaks at 1635 cm™ and ZnO vibrations caused
by bending deformation. At 610 cm™, strong vibrational bands are produced as a result of
the stretching modes utilized to form the ZnO nanoparticles. The phytoconstituents of P.
granatum prevent the aggregation of ZnO-NPs during their production [22,23,28,29]. This
is achieved by stabilizing the nanoparticles’ surface.
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Figure 7. FTIR spectrum of ZnO-NPs.

3.6. Photocatalytic Activity

To evaluate the photodegradation of textile Orange 16 reactive dye in the presence
of ZnO nanoparticles, the decrease in the absorbance of the dye was determined. The de-
crease in the absorbance of the dye solution as a function of exposure length is consistent
with a decline in the concentration of textile Orange 16 reactive dye. Over time, the con-
centration of the blue pigment in the dye solution progressively lost its vibrancy, until it
ultimately became light blue. Figure 8 depicts the deterioration of the textile Orange 16
reactive dye stain as a function of time in the samples exposed to sunlight. It can be seen
that 600 nm is the wavelength at which textile Orange 16 reactive dye has the highest
absorption peak. In addition, it reveals that ZnO-NPs are capable of significantly reducing
the pollutant within three hours.
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Figure 8. UV-vis absorption spectra showing the degradation of textile Orange 16 reactive dye by
photocatalytic action using zinc oxide NPs synthesized via the green route at 30 min time intermis-
sions. Inset: decrease in intensity of textile Orange 16 reactive dye in the presence of ZnO-NPs with
time.

3.7. Recyclability and Photostability

Three cycles of photocatalysis were conducted to assess whether or not the photo-
catalyst could be recycled. The images are depicted in Figure 9. Figure 9a shows a 100%
efficiency even after three cycles of photocatalysis. In addition, as seen in Figure 9b, the
XRD measurements performed after the photocatalytic phenomenon show that the crys-
talline structure of ZnO has not altered when compared to before the photocatalytic pro-
cess was undertaken.
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Figure 9. (a) The degradation profile of ZnO-NPs for three cycles and (b) XRD of ZnO after three
cycles.

Figure 10 shows the photodegradation of the Orange 16 dye by using green synthe-
sized ZnO nanoparticles. As observed in Figure 10, the effectiveness of the ZnO-NPs as
photocatalysts for the breakdown of organic materials is shown by the decline in the color
intensity of the dye with respect to the time of exposure to sunlight.

Figure 10. The color intensity before and after photodegradation using green synthesized ZnO na-
noparticles.

3.8. Photolysis

There are three types of photocatalytic dye degradation mechanisms: (1) dye sensiti-
zation via charge injection, (2) indirect dye degradation via oxidation/reduction, and (3)
direct photolysis of the dye. Photocatalytic substances are generally classified into three
generations. One-component (e.g., ZnO and TiO2) and multi-component semiconductor
metal oxide (e.g., ZnO-TiO:z and Bi203-ZnO) photocatalysts are classified as first-genera-
tion and second-generation, respectively. Third-generation photocatalysts are photocata-
lysts that are dispersed on an inert solid substrate (e.g., Ag-Al20s and ZnO-C).

Because some dyes are degraded by direct UV irradiation, it is necessary to investi-
gate the extent to which textile Orange 16 reactive dye is photolyzed in the absence of a
photocatalyst. In the absence of the photocatalyst, direct UV radiation exposure photo-
lyzed textile Orange 16 reactive dye by up to 25% in 30 min. When ZnO-NPs were used
as a photocatalyst and exposed to UV radiation, it was discovered that the
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photodegradation of the dye increased by decolorizing the textile Orange 16 reactive dye
with an efficiency of 96% in 30 min. The time-dependent photocatalytic degradation and
the photolysis of textile Orange 16 reactive dye concentration are shown in Figure 11.
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Figure 11. Time-dependent photocatalytic degradation and photolysis of textile Orange 16 reactive
dye concentration (C/Co).

3.9. Comparison

The dye photodegradation in the presence of the synthesized ZnO-NPs was com-
pared to a commercial ZnO and previously reported work. The results are tabulated in
Table 3.

Table 3. Comparison of ZnO-NPs as a photocatalyst for dye degradation.

% Photocatalytic

SI. No Photocatalyst Time (min) Degradation of Dye Reference

1 ZnO 180 94 Present work
ZnO 180 95 Commercial ZnO

3 ZnO 160 86.9 [17]

Among the tested ZnO NPs, commercial ZnO performed the best when compared to
other ZnO NPs.

4. Conclusions

In the current investigation, an extract of the leaves of P. granatum was dissolved in
water and utilized in a green synthesis process, which resulted in the successful genera-
tion of ZnO-NPs. The preparation of spherical, polydisperse ZnO-NPs with sizes ranging
from 50 to 100 nm and an average size of 80 nm was performed. The majority of the na-
noparticles are spherical and have an 80 nm diameter. According to the results of the EDX
analysis, the ZnO powder has a very high degree of purity and includes nearly no impu-
rities. The powder consists of 76% zinc and 15% oxygen. According to the results of the
photocatalytic experiment, the bio-produced ZnO-NPs are able to photodegrade the tex-
tile Orange 16 reactive dye with an overall efficiency of 93%. The photolysis of the textile
Orange 16 reactive dye concentration without and with ZnO-NPs shows that the ZnO-
NPs play the role of photocatalysts effectively. According to the results of this work, the
manufacture of ZnO-NPs using the P. granatum leaf extract is safe, inexpensive,
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straightforward, and environmentally friendly, and these nanoparticles have shown effi-
cacy as green photocatalysts in the actual treatment of wastewater.
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