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a b s t r a c t

In this study, sulfated and carboxylated cellulose nanocrystals (CNC) have been produced from newly
identified cellulose-rich bio-sourced material, namely Juncus plant. The Juncus plant stems were firstly
subjected to chemical treatments to produce purified cellulose microfibers (CMF) with an average diam-
eter of 3.5 mm and yield of 36%. By subjecting CMF to sulfuric and citric/hydrochloric mixture acids
hydrolysis, sulfated CNC (S-CNC) and carboxylated CNC (C-CNC) have been produced with a diameter
of 7.3 ± 2.2 and 6.1 ± 2.8 nm, and a length of 431 ± 94 and 352 ± 79 nm, respectively. These newly
extracted S-CNC and C-CNC exhibited a crystallinity of 81% and 83% with cellulose I structure and showed
high thermal stability (>200 �C). Herein, this newly identified Juncus plant, which is a naturally-derived
source, could be used as a valuable alternative to conventional sources such as wood and cotton for
nanocellulose production. We speculate that the determined high thermal stability, the large aspect ratio
and high crystallinity will allow the use of the extracted CNC as nano-reinforcing agents in polymers that
require processing temperatures of up to 200 �C. Owing to their surface functionalities (sulfated or car-
boxylated surface groups), the here produced CNC could be used as nano-additives or nano-reinforcing
agents for water-soluble bio-polymers in order to produce bio-nanocomposites by solvent casting
techniques.

� 2019 Elsevier B.V. All rights reserved.

1. Introduction

The identification of new renewable sources for the production
of biodegradable naturally-derived nanomaterials has steadily
increased in recent years [1,2]. There are various unexplored valu-
able cellulose-rich materials found in nature and not yet valorized
for the production of cellulose derivatives such as cellulose micro-
fibers (CMF), cellulose nanofibrils (CNF) and cellulose nanocrystals
(CNC). These non-conventional sources could be used as an impor-
tant alternative to conventional sources such as wood and cotton
[3]. In this context, various natural fibers, agricultural by-
products, and marine biomass have been recently identified as
renewable sources for cellulose derivatives production [3–14].
Among such underutilized renewable sources, Juncus plant (Juncus
effusus L, rush or smmar in Arabic) is one of the naturally-derived

materials that is rich in cellulose product and widely abundant in
nature, especially in African countries [15,16]. It is a widespread
plant belonging to Juncaceae family with about 200 species, grow-
ing in different environmental conditions, especially in wet places
(lakes, rivers, ponds, mountain, etc.). The Juncus plant is in the form
of a tuft of grass consisting of hollow cylindrical rods of about 1 m
in height and 4–8 mm in diameter containing a white spongy
material. Generally, these plants are harvested and processed into
woven textiles such as baskets and fiber mat [17]. In addition,
researchers previously revealed that fibers from Juncus plant have
a good potential as polymer reinforcing fillers [15–17]. Impor-
tantly, the high content of cellulose in Juncus plant (40 wt%) [16],
make it a very interesting bio-sourced rawmaterial for the produc-
tion of cellulose derivatives such as CMF and CNC.

To produce pure cellulose fibers from cellulose-rich renewable
sources, the researchers used chemical methods such as alkaliza-
tion and bleaching treatments [1,2,18]. The role of two treatments
above is the removal of non-cellulosic components presented in

https://doi.org/10.1016/j.ijbiomac.2019.11.023
0141-8130/� 2019 Elsevier B.V. All rights reserved.
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the raw matter, namely lignin, hemicellulose and other extractive
substances, leading in the production of purified cellulose fibers
[1,2]. Once pure cellulose is extracted from lignocellulosic materi-
als, other derivatives could be obtained, through etherification,
esterification, oxidation and nitration reactions, such as hydrox-
yethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, cellulose
acetate, cellulose nitrate, carboxymethyl cellulose (CMC) and
others [19–21]. On the other hand, by subjecting purified cellulose
fibers to acid hydrolysis or mechanical treatment (ultrasonic cell
crusher, high shear homogenizer and centrifugation), nanocellu-
loses could be produced such as CNC and CNF [4,22]. The unique
characteristics of nanocelluloses make them potential natural
nanomaterials for many applications [3,23,24].

The use of acid hydrolysis process to breakdown the purified
cellulose fibers is the most effective method, where the cellulose
fibers are subjected to concentrated acid to hydrolyze the amor-
phous domains of the cellulose chains and leave the crystalline
domains unaltered, named CNC [23]. Various acids have been used
for this purpose, resulting in CNC with different structural, mor-
phological and thermal properties and controlled surface function-
ality [25,26]. In this context, the sulfuric acid has been extensively
used for CNC extraction; however, hydrochloric, phosphoric and
hydrobromic acids have also been reported for such purpose
[26–28]. The sulfuric acid hydrolysis is a simple process and it
requires shorter reaction time than other processes [29]. Addition-
ally, this process produces CNC with inserted anionic sulfate
groups on its surface, high crystallinity and good colloidal stability
in water [27]. Recently, the use of a mixture of citric and
hydrochloric acids for isolation of CNC with carboxylated surface
functionality was reported [25]. Generally, the physico-chemical
properties of cellulose and its derivatives such CNC and MCC
(microcrystalline cellulose) are strongly related to the nature of
the bio-sourced raw materials and the hydrolysis conditions such
as acid type, reaction time and temperature and acid concentration
[30–32]. Recently, Tarchoun et al. reported the isolation of MCC by
various acids namely hydrochloric acid, nitric acid, sulfuric acid,
and their mixtures [32]. They found that the type of the hydrolysis
acidic medium could affect the properties of the produced MCC,
especially the morphology and the crystallinity index.

The novelty of this work is the conversion of the newly identi-
fied Juncus plant stems into purified micro-sized cellulose fibers
and CNC with different characteristics and surface functionalities.
The use of sulfuric acid and citric/hydrochloric mixture acid
hydrolysis processes resulted in the isolation of sulfated CNC (S-
CNC) and carboxylated CNC (C-CNC), respectively. The as-
produced S-CNC and C-CNC were characterized in terms of their
morphologies, dimensions, structure, crystallinity and thermal
stability.

2. Materials and methods

2.1. Materials

The raw Juncus stems used in this work was collected from the
province of Settat, Morocco. The as-received raw Juncus stems
were cut into 2–4 cm small fibers, and then they were ground
using a home coffee mill. Analytical grade chemicals used for the
treatment of raw Juncus stems and the extraction of cellulosic
materials were purchased from Sigma–Aldrich.

2.2. Isolation of purified cellulose microfibers (CMF)

Raw ground Juncus stems were washed with distilled water for
1 h at 60 �C under mechanical stirring. The prewashed stems were
treated two times with 4 wt% NaOH solution at 80 �C for 2 h under

stirring. The alkali-treated Juncus fibers were bleached using a
solution made up of equal parts (v:v) of acetate buffer (27 g NaOH
and 75 mL glacial acetic acid, diluted to 1 L of distilled water) and
aqueous sodium chlorite (1.7 wt% NaClO2 in water). This treatment
was done three times for 2 h at 80 �C, resulting in cellulose micro-
fibers (CMF) (Fig. 1).

2.3. Extraction of S-CNC

S-CNC were extracted by subjecting the as-extracted CMF to
sulfuric acid hydrolysis [4]. For that, CMF were added to a pre-
heated sulfuric acid solution (64 wt%) (9 M) at 50 �C under
mechanical stirring for 30 min. Then, the mixture was diluted with
ice cubes to stop the reaction. The obtained mixture was washed
by successive centrifugations at 12,000 rpm at 15 �C for 15 min
at each step. The obtained mixture was dialyzed against distilled
water until it reached a neutral pH. Afterward, the obtained CNC
aqueous suspension was homogenized using a probe-type ultra-
sonic homogenizer for 5 min in an ice bath. Photograph of the
obtained freeze-dried S-CNC is shown in Fig. 1.

2.4. Extraction of C-CNC

C-CNC were extracted by subjecting the as-extracted CMF to
citric acid/hydrochloric acid mixture hydrolysis [25]. In this pro-
cess, the CMF were added to a preheated acid solution made from
90% citric acid (3 M) and 10% hydrochloric acid (6 M) (v/v). The
reaction was performed at 80 �C for 4 h under mechanical stirring.
Subsequently, after cooling to room temperature, the resultant sus-
pension was repeatedly washed several times using successive
centrifugations at 12,000 rpm at 15 �C for 15 min at each step, then
dialyzed against distilled water until it reached a neutral pH. The
resulted C-CNC suspension was sonicated for 15 min using a
probe-type ultrasonic homogenizer. Photograph of the obtained
freeze-dried C-CNC is shown in Fig. 1.

2.5. Materials characterization

The fibers morphology was observed by field-emission scanning
electron microscopy (SEM, HIROX SH 4000M). The samples were
first coated by a thin conductive carbon layer to help improve
SEM images. Atomic force microscopy (AFM) (Dimension ICON,
Bruker) instrument was used to characterize the dimension and
morphological of S-CNC and C-CNC. The CNC suspension (0.01 wt
%) was sonicated by ultrasonic bath for 15 min and dispersed on
to mica sheet for observation. The dimensions of CNC were directly
analyzed by using Veeco Data Analysis Software (NanoScope� Ver-
sion 8.0 software, Bruker). X-Ray diffraction (XRD) measurement
was done by D2 PHASER diffractometer using a CuK (k = 1.54,
40 kV, 40 mA) in the range of 2h = 5–50� with a scanning rate of
2�/min. The CrI of all studied sample was measured by Segal equa-
tion [33]:

CrI ¼ I200 � Iam
I200

� 100

where I200 is maximum peak intensity at 200-lattice plane (crys-
talline area), and Iam is the peak at 2h = 18� (amorphous area) [33].

Fourier transform-infrared (FTIR) spectroscopy was performed
on a Perkin-Elmer Spectrum 2000 FTIR apparatus equipped with
attenuated total reflection (ATR) accessory. The FTIR spectra were
recorded in 4000–600 cm�1 range with a resolution of 4 cm�1

and an accumulation of 16 scans. The thermal stability of samples
was evaluated by thermogravimetric analysis (TGA, Discovery TGA
from TA instruments). The weight of samples tested was 5–10 mg.
The samples were heated from room temperature to 700 �C under
nitrogen atmosphere with heating rate of 10 �C/min.

1420 Z. Kassab et al. / International Journal of Biological Macromolecules 154 (2020) 1419–1425



3. Results and discussion

3.1. Extraction processes and morphological analysis

Fig. 1 displays the overall steps of the used extraction process
and the physical aspect of each material. Before producing CNC
(S-CNC and C-CNC), raw Juncus stems were transformed into puri-
fied CMF via alkali and bleaching treatments with a yield of 36%. It
is well known that the alkali and bleaching treatments are conven-
tional processes usually applied to purify and remove the non-
cellulosic compounds (lignin, hemicellulose, protein and other
impurities) from raw finely-ground lignocellulosic materials, lead-
ing to the extraction of pure cellulosic fibers [4,18,34–36]. The
physico-chemical characteristics of such extracted pure cellulosic
fibers are dependent to the source of cellulose and to the experi-
mental conditions used such as the concentration of the alkaline
and bleaching solutions, reaction temperature and time
[4,35,37,38]. Herein, it was found that the as-extracted CMF from
Juncus stems exhibited an average microfibers diameter of about
3.5 mm and the obtained microfibers are clearly separated from
each other, as observed by SEM analysis (Fig. 2b and c). These
microfibers were cemented and connected by lignin and hemicel-
lulose in raw Juncus stems, giving a compact structure to the raw
stems, as clearly shown in Fig. 2a. The obtaining of individual
microfibers is mainly due to the defibrillation of the Juncus stems

by chemical treatments, which lead to the removal of lignin and
hemicellulose molecules bound firmly to CMF [1,18]. This finding
suggests that Juncus plant is a suitable cellulose-rich source for
CMF production with the microsized diameter and excellent struc-
tural and thermal properties (see below).

Once CMF are obtained, sulfuric acid hydrolysis and citric/
hydrochloric mixture hydrolysis were separately applied to solubi-
lize the amorphous parts of CMF, leaving the crystalline parts unal-
tered, which are identified as S-CNC and C-CNC (Fig. 3). The as-
isolated S-CNC and C-CNC showed a gel-like suspension after ultra-
sonic homogenization process, as illustrated in Fig. 3, which is typ-
ical behavior of acid hydrolyzed CNC [18,25,26]. It has been
reported that CNC produced with sulfuric acid or citric/hydrochlo-
ric mixture acid can be completely suspended at the individual
nanocrystal level in aqueous solution by electrostatic repulsion,
which are due to the insertion of negatively charged groups on
the surface of CNC during acid hydrolysis [4,25,26,39,40]. These
negatively charged groups consist of sulfate groups (SO�

3 ) in the
case of using sulfuric acid hydrolysis and carboxylate group-
sðCOO�Þin the case of using citric/hydrochloric mixture acid
hydrolysis. It has been reported that the use of sulfuric acid hydrol-
ysis of cellulose induced a sulfate half-ester reaction between sul-
furic acid and cellulose surface, which led to the occurrence of
sulfate half-ester groups on the surface of CNC [25,28,41]. While
the carboxylate groups can be formed by esterification reaction

(a) 

(b) (c)

400 µm 50 µm

    500 µm      

Fig.2. SEM images of (a) raw Juncus stems (R-Junc) and (b and c) CMF.

Fig. 1. Overall steps for extraction of CMF and CNC (S-CNC and C-CNC) from raw Juncus stems.
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between the hydroxyl groups of cellulose and the carboxyl groups
of citric acid, leading into carboxylated CNC (C-CNC) [25].

Fig. 3 shows the AFM images of both extracted CNC (S-CNC and
C-CNC), which confirmed the successful isolation of individual
nanocrystals after acid hydrolysis process using sulfuric acid and
citric/hydrochloric mixture acid hydrolysis process. The AFM
images showed that the extracted CNC exhibited a needle-like
shape, which is the common shape observed for CNC extracted
by acid hydrolysis process [4,34,35]. The average diameter and
length of S-CNC was measured at 7.3 ± 2.2 and 431 ± 94 nm
(Table 1), respectively, giving rise to an aspect ratio of 59. Compar-
atively, the measured aspect ratio of S-CNC is higher than that
determined for sulfuric acid hydrolysed CNC derived from other
new identified sources such as vine shoots (32), pineapple crown
waste (6.3) [7], pistachio shells (16) [8], rice and coffee husks
(10–20) [9], barely straw (19) [10], acacia bark (11.5–18.6) [11],
wheat bran (20–32) [12] and industrial waste cotton (40) [13].
However, it is found to be comparable to that of CNC extracted
from other sources such as sugarcane bagasse (55) [14], Sunflower
oil cake (65) [5], red algae waste (57) [4], alfa fibers (66) [18],
spruce bark (63) [6].

As presented in Fig. 3, the carboxylation treatment showed a
separated dispersion of C-CNC with an average diameter and
length of 6.1 ± 2.8 and 352 ± 79 nm (Table 1), respectively, result-
ing in an aspect ratio of 57, which is comparable to that measured
for S-CNC (59). It is worth noting that the extraction of C-CNC was
carried out using the same process firstly described by Yu et al.
[25], who extracted C-CNC from commercial microcrystalline cel-
lulose (MCC) via a mixture of citric/hydrochloric acids with opti-
mized experimental conditions. Herein, it was found that the
measured aspect ratio of C-CNC from Juncus stems is very higher
than that measured for C-CNC obtained from MCC (13.5) [25], sug-
gesting that the purified cellulose from Juncus stems is very inter-
esting source for the production of C-CNC with relatively high
aspect ratio.

Remarkably, the smaller diameter and length of C-CNC com-
pared to S-CNC may be due to the strong acidity level of citric/
hydrochloric mixture acid that can severely break the amorphous
domains of native cellulose, resulting in smaller dimensions. This
finding suggests that the as-produced CMF from Juncus stems are
suitable for the production of CNC with uniform shape, nanomet-
ric, high aspect ratio and functionalized surface.

C-CNC

S-CNC

Fig.3. Aqueous suspensions and AFM images of S-CNC (Top) and C-CNC (bottom).

Table 1
Structural and morphological properties of the extracted CNC (S-CNC and C-CNC).

Sample XRD AFM TGA/DTG

D (nm) L (nm) CrI (%) Tonset (�C) Tmax1 (�C) R at 600 �C

R-Junc – – 43 189 322 25
CMF – – 72 230 356 10
S-CNC 7.3 ± 2.2 431 ± 94 81 221 332 32
C-CNC 6.1 ± 2.8 352 ± 79 83 231 347 17
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3.2. Infrared spectroscopy analysis

Fig. 4 illustrates the FTIR spectra of raw Juncus stems, CMF, S-
CNC and C-CNC. All the samples show the characteristic peaks of
cellulose molecules. The region between 3500 and 3000 cm�1 is
mainly originated from OH groups, while the peaks at around
2900 cm�1 arise from the CAH symmetrical stretching (Fig. 4a)
[42]. From Fig. 4b, the band at 1733 cm�1 observed only in raw Jun-
cus stems sample is assigned to the C@O stretching vibration of the
carbonyl and acetyl groups in the xylan component of hemicellu-
loses [10,32,43]. Furthermore, the bands at 1515 cm�1 and
1230 cm�1 in the spectrum of raw Juncus stems sample are attribu-
ted to the C@C stretching from aromatic hydrocarbons of lignin and
the stretching vibration mode of the acyl oxygen CO-OR associated
with the hemicelluloses, respectively [43–45]. Importantly, these
peaks were not observed in the CMF and CNC (S-CNC and C-CNC)
spectra, confirming the total removal of lignin and hemicellulose
molecules after the applied chemical treatment [1,2,32,43].

Furthermore, it is possible to see that no substantial difference
can be observed between the FTIR spectra of the extracted CNC
and that of CMF, indicating that the chemical structure of the cellu-
lose was not altered during acid hydrolysis process using the two
selected acid media. This finding is in accordance with previously
reported studies [32]. It is worth noting that sulfate and carboxylate
groups were introduced on the surface of S-CNC [18] and C-CNC
[25] during the sulfuric and citric/hydrochloric acid hydrolysis,
respectively. The band relative to sulfate negatively charged groups
is generally observed at 1202 cm�1 [18], which is overlapped with
themain characteristics of cellulosemolecules in the FTIR spectrum
of S-CNC sample, while a small new band at 1725 cm�1 can be
observed in the spectrum of C-CNC (Fig. 4b), which is associated
to carboxylate groups (COO�) inserted on the surface of C-CNC,
whichwere formed by esterification reaction between the hydroxyl
groups of cellulose and the carboxyl groups of citric acid, as pro-
posed by Yu et al. [25]. Consequently, the FTIR results confirmed
the successful extraction of pure CMF and surface functionalized
CNC from the newly identified Juncus plant stems.

3.3. Crystalline structure

Fig. 5 showed XRD characteristics of raw Juncus stems, CMF, S-
CNC and C-CNC. All samples showed four major reflection peaks

appeared at 2h = 14.9�, 16.1�, 22.2� and 34.4�, corresponding to

11
�
0,110, 200, and 004 typical reflection planes of cellulose I struc-

ture [18]. This result confirmed that the raw Juncus plant stems
could be considered as lignocellulosic material. It is also confirmed
that the polymorphism of cellulose I structure, originally presents
in the raw Juncus stems, was not altered after the successive chem-
ical treatments applied at different stages, including alkali and
bleaching treatments as well as acid hydrolysis processes.

The crystallinity index (CrI) values measured for all studied
samples are listed in Table 1. The CrI was found to be about 43%,
72%, 81%, and 83% for raw Juncus stems, CMF, S-CNC and C-CNC
samples, respectively. The increasing of CrI from raw Juncus stems
to CMF is associated with the total removal of amorphous non-
cellulosic compounds such as lignin, hemicellulose and others.
The increased CrI observed for S-CNC and C-CNC, compared to
CMF, was expected since the role of the applied acid hydrolysis is
to solubilize the amorphous regions of cellulose, leaving the crys-
talline domains unaltered, as observed by AFM images (Fig. 3).
The obtained CrI for S-CNC and C-CNC is comparable to that
reported for CNC extracted from other sources using acid hydroly-
sis process [4,6,18,25,26,34,45]. This finding suggests that the raw
Juncus stems are very interesting naturally-derived material for
obtaining CNC with high crystallinity, which is very important
property for the application of CNC, especially as nano-
reinforcing agents for polymer nanocomposites development.

3.4. Thermal degradation behavior

TGA and DTG of raw Juncus stems and the extracted CMF, S-CNC
and C-CNC are displayed in Fig. 6a and b, respectively, and the
thermal parameters such as the onset temperature (Tonset) and
the maximum degradation temperature (Tmax) are listed in Table 1.
The raw Juncus stems showed the lower thermal stability regarding
its extracted parts (CMF and CNC). The Tonset and Tmax of raw Juncus
plant were measured at 189 and 322 �C, respectively, which are 41
and 34 �C lower than those observed for CMF (230 and 356 �C).
This finding is due to the removal of non-cellulosic compounds
(lignin and hemicellulose) that are characterized by low thermal
stability [10,32,33,45–47].

The extracted CNC (S-CNC and C-CNC) showed very good ther-
mal stability, especially the sulfuric acid hydrolyzed CNC (S-CNC),
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Fig. 4. FTIR spectra of raw Juncus stems (R-Junc), CMF and CNC (S-CNC and C-CNC).
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that are generally suffer from its limited thermal stability.
Herein, the Tonset determined for S-CNC was found to be 221 �C
(with a Tmax of 332 �C), which is higher than that earlier reported
in the literature for S-CNC extracted from other sources
[4,5,14,18,35,36,48,49]. This finding suggests that the native cellu-
lose (CMF) extracted from Juncus stems source is suitable for
extracting thermally stable CNC by sulfuric acid, which represents
the effective acid generally used for this purpose. On the other
hand, the thermal stability of C-CNC (Tonset of 231 �C) is comparable
to that observed for CMF (Tonset of 230 �C) and slightly higher than
that measured for S-CNC (Tonset of 221 �C), suggesting that the ther-
mal stability of acid-hydrolysed CNC are influenced by the experi-
mental extraction conditions, as previously reported in the
literature [4,26]. In contrast, the obtained thermal stability of C-
CNC is lower than that reported by Yu et al. for C-CNC extracted
from microcrystalline cellulose using the same extraction process
[25], who found a Tonset and Tmax of 283 �C and 353 �C, respectively,
which are 52 �C and 6 �C higher than those measured in this work.

This finding suggests that the level of thermal stability CNC is
strongly related to the source of cellulose [10].

From the TGA curves and the values listed in Table 1, it is pos-
sible to see that the studied samples showed a different behaviour
concerning the char residue at 600 �C. Indeed, the thermal decom-
position of CMF sample resulted in reduced char residue (10%) as
compared to raw Juncus stems (25%), which is probably due to
the absence of the charred residue that can be generated from
the degradation of lignin and hemicelluloses [34,45]. However,
these molecules have been totally removed by the bleaching treat-
ment, which confirms the low content of char residue for CMF
sample. Moreover, S-CNC showed a relatively high char residue
(32%) as compared to the CMF sample (10%), due to the insertion
of sulfate groups that act as flame-retardants [45]. The higher char
residue produced by S-CNC as compared to C-CNC (17%) is proba-
bly due to the higher surface functionalization and the lower tem-
perature required for degradation of S-CNC.

4. Conclusions

Cellulose microfibers (CMF) and cellulose nanocrystals (CNC)
have been successfully produced from Juncus plant stems. This
later was identified for the first time as naturally-derived lignocel-
lulosic material for the extraction of micro- and nano-cellulose
fibers. Conventional purification processes such as alkaline and
bleaching treatments were applied to raw Juncus stems, resulting
in the production of pure CMF with an average microfibers diame-
ter of 3.5 mm and a crystallinity of 72%. By subjecting CMF to sulfu-
ric acid and citric/hydrochloric mixture acid hydrolysis, sulfated
CNC (S-CNC) and carboxylated CNC (C-CNC) were separately
obtained with different characteristics. Morphologically, the as-
produced S-CNC and C-CNC exhibited a needle-like shape with
an average diameter of 7.3 ± 2.2 and 6.1 ± 2.8 nm, and an average
length of 431 ± 94 and 352 ± 79 nm, giving rise to an aspect ratio
of 59 and 57, respectively. The crystallinity of S-CNC and C-CNC
was measured as 81% and 83%, respectively. The thermal stability
of the as-extracted S-CNC and C-CNC was found to be higher than
that earlier reported for CNC from other sources extracted by sul-
furic acid hydrolysis process, which is the largely employed tech-
nique, but the resulted CNC usually suffer from limited thermal
stability. Through this study, we have demonstrated a possible
strategy to give an added value to raw Juncus plant, which is rich
in cellulose, inexpensive and renewable source. The extraction of
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CNC with excellent properties from this newly identified Juncus
plant could be used as potential nano-reinforcing agents for poly-
mer nanocomposites manufacturing using melt processing tech-
niques for a temperature below to 200 �C and for other
functional applications.
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